Copied to
clipboard

G = D5×C22≀C2order 320 = 26·5

Direct product of D5 and C22≀C2

direct product, metabelian, supersoluble, monomial, 2-hyperelementary

Aliases: D5×C22≀C2, C2410D10, C225(D4×D5), (C2×D4)⋊17D10, D1011(C2×D4), (C2×C20)⋊1C23, (D5×C24)⋊2C2, C22⋊D208C2, C23⋊D102C2, C22⋊C423D10, (C22×D5)⋊14D4, (D4×C10)⋊5C22, C242D55C2, C231(C22×D5), (C2×D20)⋊17C22, (C22×C10)⋊1C23, (C23×C10)⋊8C22, (C2×Dic5)⋊2C23, C10.54(C22×D4), (C22×D5)⋊2C23, D10⋊C49C22, (C2×C10).132C24, (C23×D5)⋊20C22, C23.D513C22, C22.153(C23×D5), (C2×D4×D5)⋊5C2, C2.27(C2×D4×D5), C52(C2×C22≀C2), (C2×C10)⋊5(C2×D4), (C2×C4×D5)⋊5C22, (D5×C22⋊C4)⋊1C2, (C2×C4)⋊1(C22×D5), (C5×C22≀C2)⋊3C2, (C2×C5⋊D4)⋊7C22, (C5×C22⋊C4)⋊3C22, SmallGroup(320,1260)

Series: Derived Chief Lower central Upper central

C1C2×C10 — D5×C22≀C2
C1C5C10C2×C10C22×D5C23×D5D5×C24 — D5×C22≀C2
C5C2×C10 — D5×C22≀C2
C1C22C22≀C2

Generators and relations for D5×C22≀C2
 G = < a,b,c,d,e,f,g | a5=b2=c2=d2=e2=f2=g2=1, bab=a-1, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bc=cb, bd=db, be=eb, bf=fb, bg=gb, cd=dc, gcg=ce=ec, cf=fc, de=ed, gdg=df=fd, ef=fe, eg=ge, fg=gf >

Subgroups: 2990 in 662 conjugacy classes, 131 normal (16 characteristic)
C1, C2, C2, C4, C22, C22, C22, C5, C2×C4, C2×C4, D4, C23, C23, C23, D5, D5, C10, C10, C22⋊C4, C22⋊C4, C22×C4, C2×D4, C2×D4, C24, C24, Dic5, C20, D10, D10, C2×C10, C2×C10, C2×C10, C2×C22⋊C4, C22≀C2, C22≀C2, C22×D4, C25, C4×D5, D20, C2×Dic5, C5⋊D4, C2×C20, C5×D4, C22×D5, C22×D5, C22×D5, C22×C10, C22×C10, C22×C10, C2×C22≀C2, D10⋊C4, C23.D5, C5×C22⋊C4, C2×C4×D5, C2×D20, D4×D5, C2×C5⋊D4, D4×C10, C23×D5, C23×D5, C23×D5, C23×C10, D5×C22⋊C4, C22⋊D20, C23⋊D10, C242D5, C5×C22≀C2, C2×D4×D5, D5×C24, D5×C22≀C2
Quotients: C1, C2, C22, D4, C23, D5, C2×D4, C24, D10, C22≀C2, C22×D4, C22×D5, C2×C22≀C2, D4×D5, C23×D5, C2×D4×D5, D5×C22≀C2

Smallest permutation representation of D5×C22≀C2
On 40 points
Generators in S40
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 5)(2 4)(7 10)(8 9)(12 15)(13 14)(17 20)(18 19)(22 25)(23 24)(27 30)(28 29)(32 35)(33 34)(37 40)(38 39)
(1 19)(2 20)(3 16)(4 17)(5 18)(6 11)(7 12)(8 13)(9 14)(10 15)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 9)(2 10)(3 6)(4 7)(5 8)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 14)(2 15)(3 11)(4 12)(5 13)(6 16)(7 17)(8 18)(9 19)(10 20)(21 31)(22 32)(23 33)(24 34)(25 35)(26 36)(27 37)(28 38)(29 39)(30 40)
(1 24)(2 25)(3 21)(4 22)(5 23)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)

G:=sub<Sym(40)| (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39), (1,19)(2,20)(3,16)(4,17)(5,18)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,24)(2,25)(3,21)(4,22)(5,23)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40)>;

G:=Group( (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,5)(2,4)(7,10)(8,9)(12,15)(13,14)(17,20)(18,19)(22,25)(23,24)(27,30)(28,29)(32,35)(33,34)(37,40)(38,39), (1,19)(2,20)(3,16)(4,17)(5,18)(6,11)(7,12)(8,13)(9,14)(10,15)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,9)(2,10)(3,6)(4,7)(5,8)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,14)(2,15)(3,11)(4,12)(5,13)(6,16)(7,17)(8,18)(9,19)(10,20)(21,31)(22,32)(23,33)(24,34)(25,35)(26,36)(27,37)(28,38)(29,39)(30,40), (1,24)(2,25)(3,21)(4,22)(5,23)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40) );

G=PermutationGroup([[(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,5),(2,4),(7,10),(8,9),(12,15),(13,14),(17,20),(18,19),(22,25),(23,24),(27,30),(28,29),(32,35),(33,34),(37,40),(38,39)], [(1,19),(2,20),(3,16),(4,17),(5,18),(6,11),(7,12),(8,13),(9,14),(10,15),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,9),(2,10),(3,6),(4,7),(5,8),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,14),(2,15),(3,11),(4,12),(5,13),(6,16),(7,17),(8,18),(9,19),(10,20),(21,31),(22,32),(23,33),(24,34),(25,35),(26,36),(27,37),(28,38),(29,39),(30,40)], [(1,24),(2,25),(3,21),(4,22),(5,23),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)]])

56 conjugacy classes

class 1 2A2B2C2D···2I2J2K2L2M2N2O···2T2U4A4B4C4D4E4F5A5B10A···10F10G···10R10S10T20A···20F
order12222···2222222···224444445510···1010···10101020···20
size11112···24555510···1020444202020222···24···4888···8

56 irreducible representations

dim11111111222224
type++++++++++++++
imageC1C2C2C2C2C2C2C2D4D5D10D10D10D4×D5
kernelD5×C22≀C2D5×C22⋊C4C22⋊D20C23⋊D10C242D5C5×C22≀C2C2×D4×D5D5×C24C22×D5C22≀C2C22⋊C4C2×D4C24C22
# reps1333113112266212

Matrix representation of D5×C22≀C2 in GL6(𝔽41)

610000
4000000
001000
000100
000010
000001
,
160000
0400000
001000
000100
000010
000001
,
100000
010000
0040000
0004000
000010
0000040
,
100000
010000
001000
0004000
0000400
000001
,
100000
010000
001000
000100
0000400
0000040
,
100000
010000
0040000
0004000
0000400
0000040
,
100000
010000
000100
001000
000001
000010

G:=sub<GL(6,GF(41))| [6,40,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,6,40,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40,0,0,0,0,0,0,40],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

D5×C22≀C2 in GAP, Magma, Sage, TeX

D_5\times C_2^2\wr C_2
% in TeX

G:=Group("D5xC2^2wrC2");
// GroupNames label

G:=SmallGroup(320,1260);
// by ID

G=gap.SmallGroup(320,1260);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-5,570,185,12550]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^5=b^2=c^2=d^2=e^2=f^2=g^2=1,b*a*b=a^-1,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*c*g=c*e=e*c,c*f=f*c,d*e=e*d,g*d*g=d*f=f*d,e*f=f*e,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽